8-5 Determining an Equation of a Line

Objective: To find an equation of a line given the slope and one point on the line, or given two points on the line.

Vocabulary

x-intercept The x-coordinate of the point where a line crosses the x-axis.

Example 1

Write an equation of a line that has slope 3 and y-intercept 2.

Solution

Substitute 3 for m and 2 for b in y = mx + b.

The equation is y = 3x + 2.

Write an equation in slope-intercept form of each line described.

3. slope
$$\frac{1}{2}$$
; y-intercept 5

5. slope
$$-\frac{1}{2}$$
; y-intercept 4

7. slope
$$\frac{2}{3}$$
; y-intercept -6

9. slope
$$-5$$
; y-intercept 2

2. slope
$$-4$$
; y-intercept 2

4. slope
$$\frac{1}{3}$$
; y-intercept 6

6. slope
$$-\frac{1}{4}$$
; y-intercept 4

8. slope 3; y-intercept
$$-7$$

10. slope
$$-\frac{2}{5}$$
; y-intercept -1

Example 2 Write an equation of a line that has slope -2 and passes through (5, 0).

Solution

1. Substitute
$$-2$$
 for m in $y = mx + b$

$$y = -2x + b$$

2. To find b, substitute 5 for x and 0 for y in
$$y = -2x + b$$
.

$$y = -2x + b$$

$$0 = -2(5) + b$$

$$0 = -10 + b$$

$$10 = b$$

The equation is y = -2x + 10.

Write an equation in slope-intercept form of each line described.

11. slope 2; passes through
$$(3, -1)$$

13. slope
$$-4$$
; passes through $(2, 3)$

15. slope
$$\frac{2}{3}$$
; passes through $(0, 3)$

17. slope
$$-\frac{3}{5}$$
; passes through $(-1, -4)$

19. slope 0; passes through
$$\left(\frac{1}{4}, 2\right)$$

12. slope 3; passes through
$$(-1, 2)$$

14. slope
$$-2$$
; passes through $(-3, 1)$

16. slope
$$-\frac{4}{3}$$
; passes through (1, 0)

18. slope
$$-1$$
; passes through $(3, 1)$

20. slope 0; passes through
$$\left(-2, \frac{3}{8}\right)$$

8-5 Determining an Equation of a Line (continued)

Example 3 Write an equation of the line passing through the points (-3, 2) and (1, -2).

Solution

1. Find the slope:

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{-2 - 2}{1 - (-3)}$$
$$= \frac{-4}{4} = -1$$

Substitute -1 for m in y = mx + b.

$$y = -x + b$$

2. Choose one of the points, say (-3, 2).

Substitute -3 for x and 2 for y.

$$y = -x + b$$

$$2 = -(-3) + b$$

$$2 = 3 + b$$

$$-1 = b$$

The equation is y = -x - 1.

Write an equation in slope-intercept form of the line passing through the given points.

- **21.** (4, 5), (2, 1)
- **23.** (1, 2), (4, 4)
- **25.** (3, 1), (5, 2)
- **27.** (0, -1), (-2, 3)
- **29.** (-2, 8), (1, 2)
- **31.** (-1, 3), (2, 0)

- **22.** (-1, 2), (4, 7)
- **24.** (3, 4), (4, 6)
- **26.** (0, -2), (-3, 2)
- **28.** (6, 4), (2, 1)
- **30.** (0, 3), (-1, 0)
- **32.** (1, -7), (2, -1)

Write an equation in slope-intercept form for each line described.

- 33. y-intercept -1; x-intercept 4
- 35. x-intercept -4; y-intercept -3
- 37. horizontal line through (2, 4)

- 34. y-intercept -4; x-intercept 1
- **36.** horizontal line through (-1, -2)
- 38. vertical line through (-1, -2)

Mixed Review Exercises

Simplify.

- 1. $\left(\frac{2}{5}t^2\right)(10t^3)$
- 3. $(6pq^2)^2$
- 5. $2 \cdot 5 3^2$
- 7. $2 \cdot (6 1)^2$

- 2. $\frac{1}{3}(6s^2 9st)$
- 4. $(-2m^2n^3)^4$
- **6.** $(2a^2b^3)(-3ab^2)$
- 8. (6x + 2y) (x + y)